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Abstract

Bud development influences shoot branching and the plasticity and adaptability of

plants. To explore the differences of post-embryonic development of different types

of buds, shoots originated from adventitious buds and axillary buds of cuttings in two

populations of balsam poplar (Populus balsamifera L.) were investigated for differ-

ences in leaf morphology, photosynthetic and growth characteristics, and the effects

of a carbonic anhydrase (CA) inhibitor on CA activity, photosynthesis and mesophyll

conductance (gm). The results showed that axillary buds produced ovate first few

leaves and longer shoots while adventitious buds produced lanceolate first few

leaves with higher specific leaf area (SLA). There were no significant differences in

leaf area-based photosynthetic rate (An), maximum carboxylation rate (Vcmax), and

maximum electron transport rate (Jmax) between shoots originated from the two bud

types. Based on the principal component analysis, shoots of adventitious bud origin

grouped on daytime respiration and SLA, while cuttings from axillary buds clustered

toward the opposite direction of quantum yield and light saturation point. Shoots

originated from different types of buds had different growth rates and biomass, but

the direction of the differences varied with the population of the mother tree. The

two populations differed in An, gm, and relationships between CA, An, and gm. There

were differences in post-embryonic growth traits of shoots from axillary buds and

those from adventitious buds, which may be an adaptive strategy for regeneration

under different light conditions.

J E L C L A S S I F I C A T I ON

Ecophysiology, Stress and Adaptation

1 | INTRODUCTION

There are different types of buds in plants, i.e. terminal buds, axillary

buds, and adventitious buds. Buds of different types can greatly

influence plant plasticity in their responses to environmental

changes (Ejaz et al. 2021; Yao & Finlayson 2015). The formation and

flushing of different types of buds, especially the branching model of

axillary buds, shape the plant architecture, which in turn affects

growth, yield, and competitiveness (Bertheloot et al. 2020). The

phenology, dormancy, and burst of a bud are determined by the

interaction between plant physiology and the environment and play

critical roles in synchronizing the growth and development of plants

with changes in environmental conditions, influencing plant survival,

particularly under harsh climate conditions (Lundell et al. 2020; Singh

et al. 2018).

Climate change can affect the relative competitiveness of differ-

ent tree species in various ways, such as the setting, development,

and flushing of different types of buds and their responses to
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environmental conditions (McKown et al. 2018). Climate change may

disrupt the synchronization of bud phenology with seasonal changes

in temperature and photoperiod, increasing the risk of injuries by

unfavorable environmental conditions, such as freezing temperature

(Villouta et al. 2021; Yordanov et al. 2014). Usually, the development

of axillary buds in most tree species is inhibited by the terminal bud,

which is called apical dominance (Bertheloot et al. 2020). However,

terminal buds and axillary buds have the same development model

and potential (Chabikwa et al. 2019; Rinne et al. 2015). Vegetative

buds, such as terminal buds and axillary buds, are more prone to

browsing by herbivores because their meristems are rich in nutrients

but low in defense chemicals (Sobuj et al. 2020). Although terminal

and axillary buds are usually protected by scales, they are vulnerable

to damages, such as during a crown fire (Nolan et al. 2020). Damages

to buds can modify tree architecture and change their competitive-

ness in changing environmental conditions (Chabikwa et al. 2019;

Villouta et al. 2021).

Adventitious buds may play an important role in tree response

to climate change (Chao et al. 2017). The meristem of an adventi-

tious bud is believed to be derived from a single cell located in the

epidermal layer or vascular cambium (Nabeshima et al. 2017), differ-

ent from the origin of the meristem of a terminal bud or an axillary

bud; thus, shoots developed from adventitious buds may have differ-

ent phenology than their parent plant (Vanden Broeck et al. 2018).

This phenotypic variability may improve the response of trees to cli-

mate change and heterogeneous environments (McKown

et al. 2014). While there has been extensive research about the ter-

minal and axillary buds, there is a paucity of information on adventi-

tious buds in the literature.

As a means of vegetative propagation, cutting is extensively used

in agriculture, horticulture, and forestry (Li et al. 2018). Cuttings are

also used as a research tool for investigating the bud phenology of

deciduous plants or as substitutes for large trees in phenological stud-

ies (Camargo Alvarez et al. 2018). Balsam poplar (Populus balsamifera

L.) is a widespread boreal species distributed throughout temperate

boreal regions of North America (Suarez-Gonzalez et al. 2018). Balsam

poplar has robust tolerance over a wide range of environmental condi-

tions and plays a key role in local ecosystems (Prunier et al. 2019).

Shoots formed on cuttings can originate from adventitious buds, axil-

lary buds or both. Adventitious buds occur in the internodes of many

poplar tree species in vitro (Douglas 1984) and serve as a potential

bud bank to enable plants to overcome the meristem's limitation and

thus better tolerate severe damages (Klimešová et al. 2014). The

expenditure of resources (e.g. carbohydrates and nutrients) differs

between the production of an axillary bud and that of an adventitious

bud (Mishra et al. 2021).

However, it is unknown whether plants derived from different

types of buds are physiologically different. In this study, we observed

differences in growth characteristics and some physiological traits

between leaves of shoots derived from adventitious buds and those

derived from axillary buds in two populations of balsam poplar. Those

differences could potentially affect the performance of the

regenerates.

2 | MATERIAL AND METHODS

2.1 | Plant materials and growth conditions

Twigs of balsam poplar (Populus balsamifera L.) were cut from 12 trees

of two populations growing at Thunder Bay, Canada: Lakehead Uni-

versity arboretum (48.428�N, 89.261�W; Population 1, P1) and Con-

federation College campus (48.402�N, 89.263�W, P2). Trees of similar

sizes were selected at least 50 m apart from each other. Twigs of

about 1 cm diameter and 100 cm length were sampled and cut into

10 cm sections containing two axillary buds. There was a total of

192 cuttings per population. The sections were treated with a rooting

hormone (Plat Prod Stim Root #3, Plant Products Co. Ltd.) and planted

in styroblock containers filled with a mixture of peat moss and vermic-

ulite (1/1, v/v). The containers were placed in a polyethylene tent in

the greenhouse to maintain high humidity and misted continuously to

induce rooting. Rooted cuttings were transplanted into 3.5 L plastic

pots filled with peat moss and vermiculite (1:1, v:v). The plants were

watered as needed to keep the growing medium moist and fertilized

twice a week with 75 mg L�1 of a fertilizer solution (All-Purpose,

24-8-16 N-P-K fertilizer, Plant Products Co. Ltd.).

The greenhouse conditions were 23�C/16�C day/night tempera-

tures, 16-h photoperiod, and 50% RH. The flux density of photosyn-

thetically active radiation at the canopy was 500 μmol m�2 s�1 on

sunny days. The environmental conditions were monitored and con-

trolled using an Argus Titan System (Argus Control Systems Ltd.).

Two kinds of shoots occurred on the cuttings: those originated

from an axillary bud and those resulting from an adventitious bud. Many

Populus species have the capacity to produce shoots from axillary buds

and preformed adventitious buds (Figure 1; Douglas 1984) and the first

few leaves on those different kinds of shoots are generally morphologi-

cally different (Figures S1 and S2; Critchfield 1960). Many Populus spe-

cies can produce adventitious buds in stem internodes (Douglas 1984).

The different types of shoots were identified by the corresponding bud

type: the first few leaves with narrowly elliptic to lance-ovate shape

were derived from adventitious buds, and those with ovate to widely

ovate shape were derived from axillary buds (Figures S1 and S2).

2.2 | Gas exchange measurements and carbonic
anhydrase inhibitor treatment

When the plants developed about 10 fully expanded leaves, four

plants were randomly selected from each combination of population

and bud type for gas exchange measurements on the fourth fully

expanded leaf (test leaf) from the top (Figure S4). The leaf immedi-

ately below the test leaf (i.e. fifth leaf) was used as the feeding leaf

for importing anhydrase inhibitor according to Lin's petiole-feeding

method (Lin et al. 2011). First, a light response curve, Laisk script mea-

surements, an A/Ci curve (CO2 response curve), and simultaneous

chlorophyll fluorescence measurement were conducted using a PP-

Systems CIRAS-3 Portable Photosynthesis System and a PLC3 Uni-

versal Leaf Cuvette with auto environment control and a built-in
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CFM-3 Chlorophyll Fluorescence Module (PP Systems International,

Inc.). Then, the feed leaf was cut off and a syringe was connected to

its petiole immediately to feed the plant with 5 mL carbonic

anhydrase inhibitor (Acetazolamide) solution (Figure S4; Fromm

et al. 2016). The inhibitor solution contained 1 mM acetazolamide and

10 mM NH4OH (pH = 9.4) (Momayyezi & Guy 2017). Pre-treatment

tests showed that there was no significant difference in net photosyn-

thetic rate in the test leaf before and after petiole-feeding treatment

with a control solution (5 mL 10 mM NH4OH without acetazolamide;

Table S2). The feed leaf was placed into a freezer of �35�C immedi-

ately after being cut off for measuring carbonic anhydrase activity and

photosynthetic pigments. Within 1.5 h after the inhibitor was

completely absorbed, A/Ci curve and chlorophyll fluorescence mea-

surements on the same test leaf were repeated. Following the mea-

surements, the test leaf was cut off and stored at �35�C to evaluate

the inhibition effect on carbonic anhydrase activity.

The Laisk script measurements were conducted at 50, 100,

150, and 200 μmol mol�1 CO2 concentration (Ca) and 75, 150, and

300 μmol m�2 s�1 PAR. The A/Ci curve was measured at 400, 300,

200, 150, 100, 50, 400, 600, 800, 1000, and 1200 μmol mol�1 CO2

and 600 μmol m�2 s�1 PAR. The light response curve was performed

at 400 μmol mol�1 CO2 and 50, 100, 150, 200, 300, 400, 600, 800,

1000, 1200, 1500 μmol m�2 s�1 PAR.

The A/Ci data were analyzed using the Plantecophys fitaci func-

tion of the R package to produce the maximum carboxylation rate of

ribulose-1,5-bisphosphate (RuBP; Vcmax, μmol m�2 s�1), and the maxi-

mum electron transport rate of photosynthetic (Jmax, μmol m�2 s�1;

Duursma 2015). The light response curve data were analyzed using

the rectangular hyperbola model to obtain the apparent quantum yield

(Φ), light compensation point (LCP), and light saturation point (LSP).

The “constant J method” was used to determine the mesophyll

conductance (gm) from the rate of daytime respiration (Rd) and CO2

F IGURE 1 Bud break of balsam poplar cuttings. Green leaf emerged from an axillary bud (A) and early leaves on a shoot from an axillary bud
(B). Adventitious bud break from bark (C, (1)), shoot with early leaves from adventitious bud (C, (2)) and the axillary buds will eventually drop off
(C, (3)). More pictures are provided in the Appendix S1

TABLE 1 ANOVA p-values for the effects of population and bud
type on photosynthetic traits, pigment content, and carbonic
anhydrase activity of cuttings from axillary buds or adventitious buds
of two balsam poplar populations

Factors Population Bud type Population* bud type

Vcmax 0.128 0.769 0.314

Jmax 0.016 0.476 0.701

An 0.032 0.465 0.132

gm <0.001 0.056 <0.001

Ci* 0.372 0.051 0.007

Rd 0.016 <0.001 0.153

Φ 0.025 0.001 0.45

PN 0.435 0.137 0.655

LCP <0.001 0.012 0.023

LSP 0.002 <0.001 0.967

CA 0.014 0.203 0.002

ACNs <0.001 0.005 <0.001

Chl 0.009 0.4 0.681

Biomass <0.001 0.038 0.002

Shoot length <0.001 0.039 0.361

SLA <0.001 0.007 0.103

Note: “*” indicates an interaction between population and bud type,

significant p-values ≤0.05 are bolded.

Abbreviations: ACNs, leaf anthocyanins concentration; An, net

photosynthetic rate at 400 μmol mol�1 CO2 and 800 μmol m�2 s�1 PAR;

CA, carbonic anhydrase activity; chl, leaf chlorophyll concentration; Ci*,

CO2 compensation point at intercellular; gm, mesophyll conductance; Jmax,

maximum electron transport rate of photosynthetic; LCP, light

compensation point; LSP, light saturation point; PN, the max

photosynthetic rate at 400 μmol mol�1 CO2 and 1500 μmol m�2 s�1 PAR;

Rd, daytime respiration rate; SLA, specific leaf area; Vcmax, maximum

carboxylation rate of ribulose-1,5-bisphosphate (RuBP); Φ, quantum yield.
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compensation point (intercellular, Ci*) estimated from the Laisk mea-

surements (Momayyezi & Guy 2017) and electron transport rate (J)

from chlorophyll fluorescence measurements (Harley et al. 1992). The

chlorophyll fluorescence measurement was taken using the built-in

CFM-3 model of the PP Systems CIRAS-3 system.

2.3 | Assay of chlorophyll, anthocyanin content,
and carbonic anhydrase activity

Leaf lamina (0.2 g) from the sample leaf was placed in a vial containing

1 mL of 25% acetone water solution, and another 0.2 g leaf lamina

from the same leaf was placed in a vial containing 1 mL water solution

of 3 M HCl and 1 M MeOH. After 24 h incubation in darkness, the

vials were centrifuged at 840g for 10 min and absorbances were mea-

sured with a spectrophotometer (Bio-rad Smart Spec Plus Spectro-

photometer) at 530, 647, 653, and 663 nm. The total chlorophyll

concentration of the acetone extract was measured at A647 and A663

according to Alan' method (Wellburn 1994). Anthocyanin concentra-

tion was determined from the MeOH extract at A530 and A653 as

A530 � 0.24 � A653 (Gould et al. 2000).

Carbonic anhydrase activity was estimated based on the

bromothymol blue colorimetric test described by Wilbur and Ander-

son (1948). Leaf blade (0.2 g) was ground in 1 mL of 40 mM potassium

F IGURE 2 Mean values ± SE (n = 8 for panels A and E–H; n = 4 for panels B–D) of photosynthetic traits of shoots originated from axillary
buds (X) or adventitious buds (T) in two balsam poplar populations (P1 and P2). Means with different letters are significantly different from each
other (p ≤ 0.05). For abbreviations, see Table 1

F IGURE 3 Principal component
analysis (PCA) of cuttings from axillary
buds or adventitious buds of balsam
poplar by Φ (quantum yield), LSP (light
saturation point), shoot length, SLA
(specific leaf area), and Rd (daytime
respiration)
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phosphate buffer (pH = 8.3) using a mortar and pestle on ice. The

homogenate was centrifuged for 10 min at 5000g and 4�C, 20 μL of

the supernatant was added to 1 mL of the buffer solution containing

20 mg L�1 bromothymol blue as a pH indicator. One milliliter of CO2-

saturated water at 4�C was then added and the time (as T) that it took

for the pH of the reaction system to change from 8.3 to 6.3 was

recorded. Twenty microliter buffer solution only was used as control

and the time of pH change from 8.3 to 6.3 after adding 1 mL CO2-

saturated water was recorded as T0. The carbonic anhydrase activity

was calculated as CA (EU) = 10 � (T0/T � 1). Our ANOVA tests

showed no significant difference in carbonic anhydrase activity

between the test leaf and the feed leaf of the same plant (Table S2).

2.4 | Measurement of growth parameters

Twenty discs (the midvein was avoided) were randomly obtained from

the fourth and fifth fully expanded leaves of four additional plants

with a 2 cm diameter punch, dried and weighed to determine the

specific leaf area (SLA). The plants were harvested after height mea-

surement, the root system was washed with running water, and oven-

dried at 80�C for 48 h to determine the biomass.

2.5 | Statistical analysis

The effects of population, bud type, and their interactions were tested

using two-way ANOVA. The Shapiro test and residual plots were con-

ducted to check the normality and homogeneity of the data. Power

transform for variables that did not meet the ANOVA assumptions and

the transformed data all met the assumptions. The population was

treated as a random factor, while bud type was treated as a fixed factor

in ANOVA. In the 3-way ANOVA for the petiole-feeding experiment,

inhibitor and bud type were treated as fixed factors, while the popula-

tion was again treated as a random factor. Tukey-HSD posthoc pairwise

comparisons of means were conducted when the ANOVA showed a sig-

nificant interaction (p ≤ 0.05). Pearson correlation analysis and linear

regression were performed to examine the relationships between the

An, gm, and carbonic anhydrase activity. All the statistical analyses were

carried out using the R package. To investigate intercorrelations among

different variables, a principal component analysis (PCA) was performed

using the PCA function from the FactoMineR package.

3 | RESULTS

3.1 | Leaf shape and photosynthetic traits

The first few leaves on shoots derived from different types of buds

and different populations had different shapes: lanceolate and widely

F IGURE 4 Mean values ± SE
(n = 8 for panels A, E, F; n = 4

for panels B–D) of leaf
chlorophyll concentration,
carbonic anhydrase activity, and
growth traits of shoots from
axillary buds or adventitious buds
in the two balsam poplar
populations

TABLE 2 ANOVA p-values for the effects of population, bud
type, and carbonic anhydrase inhibitor (acetazolamide) on An, gm, and
CA activity in balsam poplar cuttings

Factors An gm CA

Population 0.189 <0.001 <0.001

Bud <0.001 0.003 0.35

Inhibitor <0.001 <0.001 <0.001

Population * bud type 0.8 0.001 <0.001

Population * inhibitor 0.017 <0.001 0.205

Bud:Inhibitor 0.763 0.3 0.137

Population * bud * inhibitor 0.027 <0.001 0.006

Probabilities ≤0.05 are boldface
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ovate for adventitious and axillary shoots of Population 1 (P1 from

Lakehead University arboretum), respectively (Figure S1A); narrowly

elliptic and ovate for adventitious and axillary shoots of P2 (from Con-

federation College campus), respectively (Figure S1B,C).

There was no significant difference in Vcmax, Jmax, An, and PN between

shoots derived from adventitious buds and those originated from axillary

buds (Table 1). However, An and Jmax of population 1 were significantly

higher than those of population 2 (Figure 2A,E). Population and bud type

interactively affected gm, Ci*, and LCP (Table 1): gm of shoots originated

from adventitious buds was significantly greater than those from axillary

buds in population 1 but the trend was the opposite in population 2. In

contrast, Ci* and LCP of shoots originated from adventitious buds were

significantly greater than those from axillary buds in population 2, while

there were no significant differences between bud types in population

1 (Figure 2B–D). Rd of shoots that originated from adventitious buds was

significantly higher than that from axillary buds in both populations

(Figure 2F), while Φ showed the opposite trend (Figure 2G). The LSP of

shoots from adventitious buds was lower than that from axillary buds and

was also significantly different between populations (Figure 2H). Principal

component analysis revealed that leaves of shoots derived from adventi-

tious buds grouped on daytime respiration and SLA, while cuttings from

axillary buds clustered toward the opposite direction of quantum yield

and light saturation point (Figure 3).

3.2 | Leaf chlorophyll concentration and growth

Leaf chlorophyll concentration in populations 1 was significantly lower

than that in populations 2 (Figure 4A) but was not significantly differ-

ent between bud types (Table 1). CA and ACNs of shoots from adven-

titious buds were significantly greater than those from axillary buds in

population 1 but not significantly different between bud types in pop-

ulation 2 (Table 1, Figure 4B,C). The shoots from adventitious buds

had significantly greater total biomass than those from axillary buds in

population 1 but bud type had no significant effect on biomass in pop-

ulation 2 (Table 1, Figure 4D). Shoots from adventitious buds were

F IGURE 5 FI Effects of carbonic anhydrase inhibitor
(acetazolamide) on mean values (±SE, n = 4) of An, gm, and carbonic
anhydrase activity (CA) in balsam poplar cuttings. “Control” stands for
the values measured on the test leaf before anhydrase inhibitor
treatment, while “acetazolamide” represents the measures on the
same test leaf after petiole-feeding of 5 mL anhydrase inhibitor
solution containing 1 mM acetazolamide and 10 mM NH4OH

F IGURE 6 Relationship between net photosynthetic rate (An,
μmol m�2 s�1), mesophyll conductance (gm, μmol m�2 s�1), and
carbonic anhydrase activity (CA, EU) in two balsam poplar
populations. The values of shoots from adventitious buds were shown
with green points and from axillary buds were with blue points
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shorter but had greater SLA than those from axillary buds, while popu-

lation 1 had significantly longer shoots and greater SLA than popula-

tion 2 (Table 1, Figure 4E,F).

3.3 | Effects of carbonic anhydrase inhibitors on
An, gm, and CA

There were significant interactive effects among population, bud type,

and carbonic anhydrase inhibitor on An, gm, and CA (Table 2). The

treatment of petiole-feeding inhibitor significantly reduced An, gm, and

CA but the degree of the reduction varied with population and bud

types (Figure 5). An was positively correlated to gm, which in turn was

positively correlated to CA, but the slopes of the regressions differed

between the two populations and the relationships were tighter in

population 1 than in population 2 (Figure 6).

4 | DISCUSSION

4.1 | Adventitious buds produced different leaves
and shoots than axillary buds

The branching pattern of bud post-embryonic development depends

on the type and activity of the meristem and determines the morpho-

logical plasticity and reproductive efficiency of higher plants (Silvestro

et al. 2020). Axillary buds are derived from axillary meristems and usu-

ally develop into dormant buds with scales at leaf axil sites, while

adventitious buds occur in tissue produced by cambium and phloem

cells (Douglas 1984; vanden Broeck et al. 2018). Our observations

show that the first few leaves that originated from adventitious buds

in balsam poplar were lanceolate, but the first few leaves from axillary

buds were ovate, and the former had a higher SLA but adventitious

buds produced longer shoots than did axillar buds.

Variations of repetitive modules, such as the basic shoot units

made of a leaf and bud, affect the diversity and environmental plasticity

of plant growth (Ejaz et al. 2021). There were obvious variations in pho-

tosynthetic characteristics of leaves on shoots from different origins in

balsam poplar. However, there were no significant differences in the

two parameters related to photosynthetic capacity between the two

bud types, confirming that photosynthesis alone may not be a sufficient

basis for predicting growth and that respiration and nitrogen assimila-

tion should also be taken into account (Tcherkez et al. 2017). We found

that the Rd and SLA of balsam poplar leaves on shoots originated from

adventitious buds were significantly higher than those from axillary

buds. Furthermore, PCA revealed that shoots from adventitious buds

grouped on Rd and SLA. Rd is a manifestation of light-induced metabolic

recombination in leaves and represents a highly dynamic metabolic

pathway (Tcherkez et al. 2017). Although the data are not sufficient,

Tcherkez and Atkin (2021) regard Rd as an important parameter of pho-

tosynthesis and a core factor in leaf carbon use efficiency and nitrogen

assimilation. The physiological significance of SLA in combination with

respiration is the cost of light interception by leaves (Poorter

et al. 2009). SLA is sensitive to light, and higher SLA is conducive to

shaded habitat (Liu et al. 2016). It is suggested that having adventitious

buds may represent a competitive advantage and improve regeneration

capacity under shaded conditions.

Forty-nine and twenty-nine percent of the light energy absorbed

by non-stressed C3 plants are used for carbon sequestration and pho-

torespiration, respectively (Skillman 2008). The remainder (22%) may

represent diversion to other metabolisms, including Rd, nitrogen

assimilation, and starch synthesis. It is found that a decrease in Φ may

be more closely related to Rd than to photorespiration (Quero

et al. 2019). Our results show that there was a negative correlation

between Φ and Rd in balsam poplar cuttings, indicating that there

might be an interaction between them (Tcherkez & Atkin 2021). The

shoots originated from axillary buds were grouped toward quantum

yield, and were significantly longer than those from adventitious buds,

suggesting that the ability to produce shoots from axillary buds may

represent a competitive advantage for balsam poplar (Li et al. 2020).

It is important to note that the maintenance of axillary buds requires

more resources and that axillary buds are vulnerable to herbivore brows-

ing and wildfire damages (Sobuj et al. 2020). The maintenance of adventi-

tious buds, in contrast, consumes less energy (Chabikwa et al. 2019).

Under the protection of the bark, the vigor of adventitious buds to pro-

duce shoots represents the resilience of a tree species to regenerate after

suffering damages (Nolan et al. 2020). It is reported that adventitious

roots and primary roots perform similarly in supporting black spruce seed-

lings but the seedlings invest heavily in adventitious roots (Harley

et al. 1992), indicating different development patterns of adventitious

organs aboveground and underground. Bud ontogenesis is the result of

the interaction of hormones, carbohydrates, and environmental condi-

tions (Lundell et al. 2020). Therefore, the differences in the ability of axil-

lary buds and adventitious buds to produce shoots may reflect a survival

strategy and adaptability of a tree species (Landhäusser et al. 2012).

4.2 | Population variation of balsam poplar

It is generally believed that phenotypic variation of tree species has a

genetic background and is the result of local adaptation in a heteroge-

neous environment (McKown et al. 2018). Moreover, a tree species with

a larger intraspecific variation generally has a wider range of plasticity and

adaptability (Curasi et al. 2019). Based on the two-node cutting system in

this study, we found that 4.7% of the cuttings in population 1 produced

callus at the incision which then differentiated shoots, while this phenom-

enon was not observed in the cuttings of population 2. In population

2, 20.8% of the cuttings had double shoots, one originated from an

adventitious bud and the other from an axillary bud, but the phenomenon

was rarely observed in population 1. The differences may reflect differ-

ences in hormones and carbohydrate supply between the populations

(Chabikwa et al. 2019), which may also be one of the reasons for the vari-

ation in post-embryonic development of different types of buds.

In addition, the cuttings of population 1 had higher photosyn-

thetic capacity and biomass, while cuttings of population 2 had higher

gm, chlorophyll concentration, and LCP. The differences in
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physiological characteristics of cuttings from different bud types sug-

gest that shoots from axillary buds in population 1 (p1X) may have

greater growth ability and better potential to be used for the regener-

ation of short-rotation energy forests (Chmura et al. 2021).

4.3 | Effects of CA on photosynthesis and gm

The gm, a key limitation to photosynthesis, describes the diffusion of

CO2 from the intercellular space to carboxylation sites in the mesophyll

(Carriquí et al. 2021; Han et al. 2019; Sun et al. 2019). CA catalyzes the

conversion between the gas phase and liquid phase of CO2 in the meso-

phyll, which is considered to impact gm (Carriquí et al. 2019; Momayyezi

et al. 2020). Acetazolamide (an inhibitor of carbonic anhydrase) that is

fed via a leaf-petiole has been found to reduce gm in balsam poplar

(Momayyezi & Guy 2017). We have found similar results in this study,

although the determination coefficients from the correlation analysis of

changing CA, An, and gm with inhibitor differed between the two

populations, suggesting that the photosynthesis of population 1 may be

more sensitive to the changes of gm and CA than population 2. The abil-

ity to adjust gm in response to changes in irradiance in plants is a compo-

nent of the adaptation to the shade-sun transitions (Fini et al. 2016). It

is suggested that balsam poplar may also participate in the adaptation to

changing light by developing axillary buds or adventitious buds.

5 | CONCLUSION

Different types of buds in balsam poplar cuttings produced different-

shaped leaves and post-embryonic shoots with different growth char-

acteristics: axillary buds produced ovate first few leaves and longer

shoots, while adventitious buds produced lanceolate first few leaves

with greater specific leaf area. There was no significant difference in

photosynthetic capacity between leaves produced by the different

types of buds. However, leaves from axillary buds showed greater

photosynthetic quantum yield but lower daytime respiration rates

than those from adventitious buds. The two populations of balsam

poplar showed differences in photosynthetic rates, mesophyll conduc-

tance, and relationships between carbonic anhydrase activity, photo-

synthetic rate, and mesophyll conductance. Different post-embryonic

growth traits were found between axillary buds and adventitious buds

of balsam poplar, which may be important for the species to different

light conditions (Wang & Dang 2021).
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