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 White birch ( Betula papyrifera  Marsh.) seedlings were exposed to ambient or doubled ambient carbon dioxide concentra-
tion ([CO 2 ]), three soil temperatures ( T  soil ) (low, intermediate, high), and three phosphorus (P) regimes (low, medium, 
high) in environment-controlled greenhouses. Height ( H  ), root-collar diameter (RCD), biomass, and leaf phospho-
rus concentration (leaf P) were determined four months after initiation of treatments. Th e low  T  soil  reduced  H , RCD, 
shoot biomass, root biomass and total seedling biomass whereas the high-P level and the [CO 2 ] elevation increased 
all the growth and biomass parameters. Elevated [CO 2 ] signifi cantly reduced leaf P. Th ere were signifi cant two-factor 
interactions suggesting that the eff ect of elevated [CO 2 ] on (1)  H , total biomass, biomass of plant components, and 
leaf P was dependent on  T  soil , (2) total biomass was contingent on P regime. For instance, the positive response of 
 H  and total biomass to elevated [CO 2 ] was limited to seedlings raised under the intermediate and high  T  soil , respec-
tively. In addition, [CO 2 ] elevation increased total biomass only at the high-P regime but not at the low- or medium-P 
level where the eff ect of [CO 2 ] was statistically insignifi cant. No signifi cant main eff ect of treatment or interaction was 
observed for root to shoot biomass ratio.   

   Soil temperature ( T  soil ) is a major environmental factor 
controlling the ecophysiological processes and structure 
of northern forests (Tryon and Chapin 1983, Bonan and 
Shugart 1989, Bonan 1992). With cold  T  soil  sites underlain 
by permafrost, warm south-facing slopes and newly burnt 
sites, and several transitional areas between the cold and 
warm extremes, the boreal forest is one of the most variable 
terrestrial ecosystems in terms of  T  soil . Th e growth of boreal 
trees show marked  T  soil  dependency (Landh ä usser and 
Lieff ers 1998, King et   al. 1999, Peng and Dang 2003, 
Aphalo et   al. 2006, Zhang and Dang 2007, Ambebe et   al. 
2009, Ambebe and Dang 2010). Adverse eff ects of cold  
T  soil  on growth result from impairments of root growth/
physiological uptake capacity, nutrient translocation, and 
CO 2  assimilation among others (Kaufmann 1977, DeLucia 
et   al. 1992, Kaspar and Bland 1992, Waring and Running 
1998, Grossnickle 2000). While we have a fair knowledge 
of the main eff ects of  T  soil  on the physiology and growth 
of boreal forest trees, little is known about how tree res-
ponses to combinations of  T  soil  and other ecosystem abiotic 
factors. Th e information void is an impediment to develop-
ment of suitable management strategies much needed 
to improve the yield of less productive boreal forest sites. 

 With a record high annual increase rate of ca 1.92 ppm 
from 2000 to 2009, the carbon dioxide concentration 

([CO 2 ]) in the atmosphere is projected to double from 
the current level by the end of this century (IPCC 2007, 
Cheng et   al. 2008, Zhou and Shangguan 2009, 
CO 2 Now 2010). Th e impact of rising atmospheric [CO 2 ] 
on northern forest ecosystems has been extensively studied. 
Photosynthetic and growth responses of forest plants to 
elevated [CO 2 ] show considerable diversity among and 
within species, ranging from highly positive to neutral, 
and in rare cases, even negative responses (Pooter 1993, 
Gunderson and Wullschleger 1994, Griffi  n and Seemann 
1996, Jach and Ceulemans 1999, Ward and Strain 1999). 
Th e intra-specifi c variations are attributed to [CO 2 ] by 
environmental interactions (Myers et   al. 1999, Zhang and 
Dang 2005, 2006, 2007, Zhang et   al. 2006, Huang et   al. 
2007, Cao et   al. 2007, 2008), and complicate accurate 
predictions of changes in forest ecosystems under the future 
high [CO 2 ] atmosphere. Nitrogen (N) has often been con-
sidered to be the main nutrient factor limiting tree growth 
in northern forests (Tamm 1975, 1991). With high input 
of anthropogenic N to these ecosystems, however, phos-
phorus (P) limitation may be an increasingly common phe-
nomenon (Gradowski and Th omas 2006, Akselsson et   al. 
2008, Prietzel et   al. 2008, Braun et   al. 2010). According to 
Braun et   al. (2010), P limitation is likely a cause of stem 
growth reduction in Swiss forests, especially in beech trees. 
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Th e stimulation of photosynthesis and growth by elevated 
[CO 2 ] are greater under high than low P availability where 
unresponsiveness to elevated [CO 2 ] has been observed 
in some cases (Stocklin et   al. 1998, Campbell and Sage 
2002, 2006). According to Grossnickle (2000), however, 
even trees that are exposed to adequate nutrient levels may 
suff er from physiological nutrient stress when growing in 
cold soils due to reduction in root activity. Previous [CO 2 ] 
and P interactive experiments on plants were conducted 
under favourably warm  T  soil  conditions, and it is not known 
whether the observed responses will be expressed by trees 
growing in low  T  soil  portions of the species ’  range. 

 White birch ( Betula papyrifera  Marsh.) is an early 
successional fast-growing boreal tree with a high nutrient 
requirement (Burns and Honkala 1990, Zhang and Dang 
2006, USDA-NRCS 2009). Reduced foliar P concentra-
tions resulting from impaired root uptake in cold soils may 
limit the CO 2  responsiveness of photosynthesis (Campbell 
and Sage 2006). Th is study was designed to test whether 
cold  T  soil  constrains the growth-promoting eff ect of 
elevated [CO 2 ] on plants that are raised under high-P 
availability. Since photosynthesis and growth of white 
birch are coupled (Ambebe et   al. 2009, 2010), we expected 
the low  T  soil  treatment to reduce the benefi cial eff ect of 
high-P supply on the response of growth to elevated [CO 2 ].  

 Material and methods  

 Plant material 

 White birch seeds were sown in germination trays in a con-
trolled environment greenhouse at Lakehead University 
(Th under Bay, Ontario, Canada). Th e germination medium 
was a mycorrhiza-free 2/1 (v/v) mixture of peat moss and 
vermiculite. Th e germination medium was misted when 
necessary to prevent drying using a spray bottle fi lled with 
normal tap water. Th e greenhouse was held at 20 – 26/
15 – 18 ° C (day/night) air temperature and 50    �    5% relative 
humidity. Supplemental lighting was provided by 400-
watt high-pressure sodium vapour lamps to extend the day 
length to 16 h. Four weeks after sowing, seedlings of 
uniform size were transplanted individually into PVC pots 
(13.5 cm tall and 11.0/9.5 cm top/bottom diameter) that 
were a component of the  T  soil  control system described in 
the following section. Th e pots were fi lled with the same 
growing medium described above.   

 Experimental design 

 Following transplant, the experiment commenced on 24 
Oct 2008 at the Lakehead University greenhouse facility 
and ended on 23 Feb 2009. Treatments were comprised 
of ambient (360  μ mol mol �1 ) and doubled ambient 1 
[CO 2 ], three  T  soil  regimes (7, 17, 27 ° C) consistent with 
conditions within the ecological range of white birch in
 the boreal forest (Ambebe et   al. 2010), and three P levels 
(21, 43, 83 mg l �1 ). However, actual values of [CO 2 ] and 
 T  soil  recorded in the greenhouse during the course of 
the course of the experiment varied by a magnitude of    
�    15  μ mol mol �1  and  �    2 ° C from the respective set values. 

 Th e experiment was laid out in a split – split plot design 
with [CO 2 ] as the whole plot,  T  soil  as the sub plots and P 
as the sub-sub plots. Th e [CO 2 ] treatments were applied 
to four identical greenhouses (two for each CO 2  level), 
resulting in two independent treatment replications. Th e 
elevated [CO 2 ] was supplied by Argus CO 2  generators.  T  soil  
was regulated using the method of Cheng et   al. (2000). 
Th ree plywood  T  soil  control boxes (one per  T  soil  treatment) 
were placed on separate benches in each greenhouse. Th e 
internal dimensions of the box are 112 cm wide, 196 cm 
long and 16 cm deep. Th e inner surface was lined with 
a heavy-duty polythene fi lm. Plastic pots (size as above) 
were fi xed over the polythene fi lm to the bottom of the 
box. A hole (1.3 cm diameter) was drilled at the center of 
each pot and through the bottom of the plywood box to 
permit the free drainage of irrigation water and fertilizer 
solution. Th e bottom of each pot was sealed from the 
bottom of the box to prevent any liquid exchange between 
the pot and the box. Th e top of the box was sealed with 
heavy-duty polythene fi lm with holes (smaller than the 
opening of pot) cut for each pot to facilitate irrigation/
fertilization and gas exchange between the growing 
medium and the air. To minimize heat exchange between 
the soil temperature control box and the ambient air, 
the top of the box was covered with polystyrene board 
insulation with a hole cut for each pot for the purposes 
described above. Th e target  T  soil  was achieved by circulating 
temperature-controlled water in the space between the 
pots using a water pump. Th e soil temperature control 
apparatus operated continuously during the experiment. 

 Ten seedlings were randomly assigned to each of the 
three P levels within each  T  soil  control box in each green-
house. Th e seedlings were fertilized twice a week with a 
nutrient solution containing 100 mg l �1  N, 83 mg l �1  K, 
30 mg l �1  Mg, 40 mg l �1  S, 50 mg l �1  Ca, and P concen-
tration for the respective P treatment level. Th e nutrient 
sources were calcium nitrate (19% Ca, 15.5% N), epsom 
salt (9.8% Mg, 12.9% S), microfi ne superphosphate 
(20% P), micromax micronutrient mix  �  12% S, ammo-
nium nitrate (17% NH 4 , 17% NO 3 ), and muriate of potash 
(62% K 2 O). During the fertilization, each seedling was 
provided with 0.5 l of the nutrient solution which saturated 
the potting medium and led to drainage of excess solution 
through the drain hole at the bottom of the pot and box. 

 During the entire duration of the experiment, all 
four greenhouses were maintained at 20 – 26/15 – 18 ° C 
(day/night) air temperature, 50    �    5% relative humidity, 
and the natural photoperiod was extended to 16 h by 
400-watt high-pressure sodium lamps with a light intensity 
of 660  μ mol m �2  s �1  at leaf level. Th e environmental 
variables were monitored continually by a customized envi-
ronment control system. Th e volumetric water content 
of the growing medium was maintained at around 30% as 
measured with a Th eta probe. No nutrients were added to 
the normal tap water that was used for irrigation. Due 
to  T  soil -related diff erences in evaporation rates, watering 
frequency was highest for seedlings growing under the 
high  T  soi l treatment. Th e temperature of the irrigation water 
and fertilizer solution was adjusted to match the  T  soil  of the 
particular treatment.   
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 Measurements 

 At the end of the experiment, six seedlings were randomly 
chosen from each  T  soil   �  P treatment and greenhouse for 
height ( H  ) and root-collar diameter (RCD) measurements. 
Th e root system of each seedling, excised at the root – shoot 
junction, was washed free of growing medium. Th e root 
and shoot fractions were then oven-dried (70 ° C, 48 h) 
and weighed for biomass determination. 

 Total leaf P concentration (leaf P) was assayed using 
the nitric/hydrochloric acid digestion method on an 
inductively coupled plasma atomic emission spectrometer 
(ICP-AES). A 0.5 g dry sample was digested in 6 ml of 
nitric acid and 2 ml of hydrochloric acid for 8 h at 90 ° C in 
a block digester. Distilled water was added to the acid to 
dilute the mixture to 100 ml. Th e test tubes were shaken 
end-over-end to have a well-mixed solution, which was then 
fi ltered to remove particles. Th e P concentration in the 
clear fi ltrate was determined on the inductively coupled 
plasma atomic emission spectrometer (ICP-AES). Total 
seedling (root  �  shoot) biomass and root to shoot biomass 
ratio (RSR) were calculated.   

 Data analysis 

 All data were examined graphically for normality of distri-
bution (normal probability plots) and homogeneity of 
variance (scatter plots) before being subjected to 3-way 
split – split plot analysis of variance (ANOVA) in Data 
Desk 6.0. Th e eff ects of [CO 2 ],  T  soil , P, and their interactions 
were considered to be marginally signifi cant at p    �    0.1 and 
signifi cant at p   �   0.05. When the ANOVA results for 
any given parameter showed a signifi cant eff ect of an inter-
action or a factor involving more than two treatment levels, 
Scheff  é  ’ s post hoc test was used for pair-wise means 
comparison.    

 Results  

 Height and root-collar diameter 

 Th ere was a signifi cant eff ect of [CO 2 ]  �   T  soil  and also a main 
eff ect of [CO 2 ],  T  soil , and P on  H  (Table 1). Th e low  T  soil  
resulted in the lowest  H  growth under ambient and elevated 
[CO 2 ] (Fig. 1a). However, the ranking of the intermediate 

and high  T  soil  treatments for  H  diff ered between the [CO 2 ] 
levels: while  H  was signifi cantly greater under high than 
intermediate  T  soil  at ambient [CO 2 ], there were no signifi -
cant diff erences between these  T  soil  treatments at elevated 
[CO 2 ] (Fig. 1a). Th e [CO 2 ] elevation had a signifi cant 
positive eff ect on  H  only at the intermediate  T  soil  but not at 
the low and high  T  soil  where this parameter did not diff er 
signifi cantly between the [CO 2 ] treatments (Fig. 1a). Th e 
signifi cant P eff ect indicated that there was no similarity 
in response between any two P regimes with seedlings sub-
jected to high-P having the highest and those raised under 
the low-P regime having the lowest values of  H  (Fig. 1a). 

 RCD was signifi cantly aff ected by each of the three 
tested environmental factors, but not by their interactions 
(Table 1). RCD was greater in elevated than ambient [CO 2 ] 
and it increased from low to high  T  soil  (Fig. 1b). While the 
high-P regime signifi cantly increased RCD, no signifi cant 
diff erences were detected between the low- and medium-P 
treatments (Fig. 1b).   

 Biomass 

 In addition to signifi cant main eff ects of [CO 2 ],  T  soil , and 
P, [CO 2 ] interacted with  T  soil  in aff ecting all biomass para-
meters (Table 1). Th ere was a general trend for the P eff ect 
on above and below-ground biomass: while seedlings 
grown under the low- and medium-P levels were statistically 
similar in shoot and root biomass, their counterparts raised 
under the high  T  soil  displayed relatively greater values of 
each parameter (Fig. 2a – b). On the other hand, the pattern 
of response to the [CO 2 ]  �   T  soil  interaction depended on 
the measured variable. 

 Th e low  T  soil  generally depressed shoot biomass (Fig. 2a). 
Elevated [CO 2 ] increased shoot biomass at the high  T  soil , 
but did not aff ect it at the low and intermediate  T  soil  
(Fig. 2a). Furthermore, there was no signifi cant diff erence 
in shoot biomass between the intermediate and high  T  soil  
in ambient [CO 2 ] (Fig. 2a). 

 Th e [CO 2 ]  �   T  soil  interaction was more complicated 
for root biomass. Under ambient [CO 2 ], root biomass 
was highest at the intermediate and lowest at the low  T  soil  
whereas under elevated [CO 2 ], it increased from low to 
high  T  soil  (Fig. 2b). Root biomass responded positively to 
elevated [CO 2 ] only at the low and high  T  soil  but not at the 
intermediate  T  soil  where there was no signifi cant response 
(Fig. 2b). However, the diff erence between elevated [CO 2 ] 

  Table 1. ANOVA p-values for the effects of [CO 2 ], soil temperature ( T  soil ), and phosphorus (P) supply on height ( H ), root-collar diameter 
(RCD), components and total biomass, root to shoot biomass ratio (RSR), and mass-based leaf phosphorus concentration ([P]mass) 
of white birch. Seedlings were raised under ambient and doubled ambient [CO 2 ], three  T  soil  (7, 17, 27 ° C), and three P regimes (21, 43, 
83 mg l �1 ) for four months. DF denotes degrees of freedom. Error d was 180. p-values  �  0.10 are indicated in bold face.  

Source [CO 2 ]  T  soil p [CO 2 ]   �    T  soil [CO 2 ]   �     P  T  soil     �    P [CO 2 ]    �     T  soil    �     P

H  0.0174   �    0.0001  0.0008  0.0146 0.9541 0.5283 0.4534
RCD  0.0020   �    0.0001  0.0086 0.6183 0.4984 0.1731 0.9966
Shoot  0.0857   �    0.0001  0.0018  0.0483 0.2860 0.6577 0.4430
Root  0.0019   �    0.0001  0.0142  0.0121 0.1772 0.2357 0.1539
Total  0.0048   �    0.0001  0.0001  0.0040  0.0989 0.9392 0.1297
RSR 0.1496 0.3964 0.5855 0.6430 0.8464 0.5972 0.9869
[P] mass  0.0160  0.0003   �    0.0001  0.0618 0.1649 0.3363 0.4456
DF 1 2 2 2 2 4 4
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ambient to elevated [CO 2 ] only at the high-P regime 
whereas it was unresponsive to [CO 2 ] at low- and medium-
P (Fig. 2c).   

 Biomass allocation 

 Th ere were no signifi cant main or interactive eff ects of 
[CO 2 ],  T  soil , and P on RSR (Table 1, Fig. 3).   

 Leaf phosphorus concentration 

 Th ere was a signifi cant eff ect of [CO 2 ]  �   T  soil  and also a 
main eff ect of CO 2 , P and  T  soil  on leaf P (Table 1). Th e low 

at high  T  soil  and ambient [CO 2 ] at intermediate  T  soil  was 
statistically insignifi cant (Fig. 2b). 

 Th ere was a marginally signifi cant eff ect of [CO 2 ]  �   
T  soil  and also a marginally signifi cant eff ect of [CO 2 ]  �   T  soil  
on total seedling biomass (Table 1). Th e low  T  soil  depressed 
total biomass under both [CO 2 ] conditions (Fig. 2c). 
Th ere were no signifi cant diff erences in total biomass 
between the intermediate and high  T  soil  in ambient [CO 2 ]. 
For the seedlings subjected to elevated [CO 2 ], values of 
this parameter were signifi cantly greater under high than 
intermediate  T  soil  (Fig. 2c). 

 Elevated [CO 2 ] signifi cantly increased total biomass 
only at the high  T  soil  but not at the low and intermediate  
T  soil  treatments where diff erences between ambient and 
elevated [CO 2 ] were not statistically signifi cant (Fig. 2c). 
With regards to the [CO 2 ]  �  P interaction, total biomass 
generally increased from low to high-P under both [CO 2 ] 
treatments (Fig. 2c). However, the diff erences between the 
medium- and high-P regimes at ambient [CO2] were not 
signifi cant (Fig. 2c). Furthermore, no signifi cant diff erences 
were observed between the low- and medium-P treatments 
at elevated [CO 2 ] (Fig. 2c). Total biomass increased from 
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  Figure 1.      Eff ects of [CO 2 ], soil temperature ( T  soil ), and phosphorus 
(P) supply on (a) height and (b) root-collar diameter (mean  �  SE, 
n     �     6) of white birch. Seedlings were raised under ambient 
(360  μ mol mol �1 ) and doubled ambient [CO 2 ], three  T  soil  (7, 17, 
27 ° C), and three P regimes (21, 43, 83 mg l �1 ) for four months. 
Th e lower-case letters indicate eff ects of CO 2     �     T  soil  and  T  soil  on 
(a) and (b), respectively. Th e upper-case letters indicate P eff ect. 
Means with diff erent letters are signifi cantly diff erent from each 
other (three-way split – split plot ANOVA and Scheff  é  ’ s test).  
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  Figure 2.     Eff ects of [CO 2 ], soil temperature ( T  soil ), and phosphorus 
(P) availability on (a) shoot biomass, (b) root biomass, and 
(c) total biomass (mean  �  SE, n     �     6) of white birch. Th e upper 
case letters in (c) indicate the eff ect of CO 2     �    N. See legend of 
Fig. 1 for further explanations.  
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for white birch (Zhang et   al. 2006, Cao et   al. 2008, Ambebe 
et   al. 2009, Ambebe and Dang 2010) and other boreal 
broad-leaf and conifer tree species including trembling 
aspen ( Populus tremulodes  Michx.; Liu et   al. 2006), Sitka 
spruce ( Picea sitchensis  (Bong.) Carr.; Townend 1995), and 
loblolly pine ( Pinus taeda  L., Myers et   al. 1999). According 
to Huang et   al. (2007), growth increments in high [CO 2 ] 
are due to increased availability of carbon. Atmospheric 
CO 2  is a substrate for plant photosynthesis (Lambers et   al. 
2008). Th e current level of CO 2  in the atmosphere is not 
saturating for the main photosynthetic enzyme, ribulose-
1,5-biphosphate carboxylase/oxygenase (Rubisco), in C 3  
plants (Lambers et   al. 2008). Consequently, [CO 2 ] eleva-
tion has been found to trigger an increase in the rate 
of carboxylation by the photosynthetic enzyme system 
and a reduction in photorespiration (Long et   al. 1996, 
Zhang and Dang 2006, Ambebe et   al. 2010), leading to 
increased rates of net photosynthesis and tree growth, at 
least in the short term (Aber et   al. 2001). Measurements of 
gas exchange from this study support the photosynthesis 
theory (Danyagri and Dang unpubl.). 

 As expected, high-P fertilization generally stimulated 
growth. More importantly, the stimulation of total biomass 
production by elevated [CO 2 ] was limited to the high-P 
regime. Th is observation is in agreement with the conclu-
sion that [CO 2 ] and nutrient availability have synergistic 
eff ects on the growth of white birch seedlings (Zhang 
et   al. 2006, Ambebe et   al. 2009). Non-limiting N and P 
conditions increase the amount and activity of Rubisco 
(Jacob and Lawlor 1992, Warren and Adams 2004, Ambebe 
et   al. 2010). Furthermore, plants grown under ample P 
have higher foliar contents of the carboxylation substrate, 
ribulose-1,5-biphosphate, than their P stressed counterparts, 
and hence, higher rates of CO 2  assimilation (Brooks 1986, 
Jacob and Lawlor 1992) and faster growth in CO 2 -enriched 
environments. On the other hand, the fraction of total 
assimilated carbon expended in root respiration has been 
found to increase substantially under low-P availability 
(Rychter et   al. 1992, Lynch and Beebe 1995, Nielsen et   al. 
1998, 2001, Lambers et   al. 2008). 

 Unlike at the high  T  soil , there was a general lack of 
response of total seedling biomass to elevated [CO 2 ] at the 
low  T  soil  treatment which generally decreased growth in 
ambient and elevated [CO 2 ]. It is also important to note 
that the gains in  H  and aboveground biomass due to [CO 2 ] 
elevation were experienced only by seedlings grown under 
the warm but not those at the low  T  soil . Th e fi nding that 
growth was unaff ected by high [CO 2 ] at the low  T  soil  partially 
supports this study ’ s hypothesis. Growth depression in 
cold soils may be related to physiological nutrient stress 
induced by a decline in root growth and nutrient uptake 
(Pastor et   al. 1987, Pritchard et   al. 1990, Par é  et   al. 1993, 
Grossnickle 2000, Peng and Dang 2003). Furthermore, a 
decline in stomatal conductance and transpiration rate 
of plants growing in cold soils may impair nutrient uptake 
through the transpiration stream (Dang and Cheng 2004, 
Zhang and Dang 2005, Ambebe et   al. 2010, current study). 
Th e decrease of foliar P contents by low  T  soil  under ambient 
[CO 2 ] in this study is consistent with the view of Grossnickle 
(2000), that even plants supplied with favourable nutrient 

 T  soil  signifi cantly reduced leaf P under ambient [CO 2 ], 
but not under elevated [CO 2 ] where no signifi cant  T  soil  
eff ects were observed (Fig. 4). Similarly, there were no 
statistically signifi cant diff erences between the intermediate 
and high  T  soil  treatments in ambient [CO 2 ] (Fig. 4). While 
leaf P declined from ambient to elevated [CO 2 ] at the 
intermediate and high  T  soil , it was unaff ected by [CO 2 ] at 
the low  T  soil  (Fig. 4). Leaf P was highest at the high-P and 
lowest at the low-P regime (Fig. 4).    

 Discussion 

 Th e CO 2  fertilization hypothesis stipulates that rising 
atmospheric [CO 2 ] has a benefi cial eff ect on the growth of 
C3 plants (Pritchard et   al. 1999, Huang et   al. 2007). In 
the present study, positive responses to elevated [CO 2 ] were 
observed for all examined morphological ( H  and RCD)
 and biomass (shoot, root, and total biomass) growth para-
meters. Similar observations have been reported previously 
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important to note, however, that in addition to nutrient 
and water availability (Pregitzer et   al. 2000, Lambers et   al. 
2008), eff ects of elevated [CO 2 ] on RSR also depend 
strongly on species (Berntson and Bazzaz 1996) and tem-
perature (Wan et   al. 2004), as well as on fi ne root formation 
and root turnover rates. As a result of interactions among 
these factors, the RSR might increase (Rogers et   al. 1996, 
Pregitzer et   al. 2000) or decrease (Kandeler et   al. 1998) in 
response to elevated [CO 2 ]. 

 In conclusion, low  T  soil  generally depressed growth of 
white birch, and some of the morphological and biomass 
growth parameters responded positively to increased [CO 2 ] 
under intermediate and high but not under low  T  soil . 
Given the wide variations in  T  soil  within the boreal forest, 
and the likelihood for future increases in atmospheric 
[CO 2 ], the responses reported here may have considerable 
importance for the biomass distribution and structure of 
the taiga ecosystem in the future. In other words, the pro-
jected increase in atmospheric [CO 2 ] may be more benefi cial 
to white birch trees growing in moderately warm  T  soil  sites 
than their counterparts in cold  T  soil  portions of the species ’  
range. Additionally, the CO 2     �    P interaction on total bio-
mass suggests that biomass gain due to [CO 2 ] elevation is 
limited to seedlings grown under high-P availability. Conse-
quently, silvicultural practices, such as blade scarifi cation, 
plowing (Spittlehouse and Stathers 1990) and mounding 
( Ö rlander et   al. 1998), that increase  T  soil  and P mineraliza-
tion could lead to improved plant responses to high [CO 2 ] 
on less favourable sites. However, some problems remain for 
future studies regarding application of our results based on 
seedlings from this short-term controlled-environment 
experiment to natural forests. For instance, the light inten-
sity at leaf level in this study does not refl ect the higher 
natural light levels to which plants are exposed in the fi eld. 
Increases in irradiance have been found to increase, decrease, 
or have no eff ect on the growth of plants under elevated 
[CO 2 ] (Lewis et   al. 1999, Ward and Strain 1999). Further-
more, because the leaf P contents resulting from the low-
P treatment do not refl ect those in plants growing under 
low P stress in the fi eld (Kopinga and van den Burg 1995), 
it is important to further examine how  T  soil  and P may inter-
act in aff ecting the growth-promoting eff ect of elevated 
[CO 2 ] when much lower P conditions are involved.         
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